
Introduction

Rainfall erosivity provides the estimation of the forces

produced by rainfall to cause water erosion [1]. The rainfall

erosivity force (R factor) is one of the basic factors of the

universal soil loss equation (USLE) and the revised form of

the USLE. The R factor in these erosion models is the aver-

age of summation of storm EI30 during the year. The EI30

factor is the product of total storm energy (E) and the max-

imum intensity measured during 30-minute periods I30. 

Estimation of the EI30 index requires intensity data

series over a long period of time at short time intervals, but

access to such data is limited in many parts of the world,

especially in Iran. Rainfall amount data such as annual,
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Abstract

The objective of our study was to expand the R factor of the RUSLE model, erosivity index by its esti-

mation from more readily available rainfall erosivity indexes and parameters in stations without rainfall inten-

sity data, and to determine the most accurate interpolation method for preparing an erosivity index map.

Among different erosivity indexes and parameters based on rainfall amounts, only the modified fournier Index

(FImod) was highly correlated with EI30 in 20 synoptic stations. A local model was used for estimating EI30 from

FImod in the other 66 stations without rainfall intensity data. The spatial variability of the calculated EI30 in all

of the stations was different at an azimuth of 32º when compared to the other directions. Moreover, the nugget-

to-sill ratio of the semivariogram (0.27) confirmed a strong spatial correlation of EI30. The inverse distance

weighting (IDW), spline, kriging, and cokriging methods with elevation as a covariable were compared by a

cross-validation technique. The root mean square error (RMSE) value of the cokriging method when com-

pared to that of the IDW, kriging, and spline methods in the study area declined by 11%, 3%, and 4%, respec-

tively. The output maps for all of the interpolation methods followed similar decreasing trends from west to

east, with the highest erosivity index (1,450 MJ·mm·ha-1·h-1·y-1) found in the west. This pattern corresponds

with the pattern of climatic change from subhumid to semiarid. 
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monthly, and daily rainfall are more readily available in

many stations. A combination of these parameters as readi-

ly available indexes can be used. A number of studies have

presented relationships between indexes on the basis of

rainfall intensity and amount. These relationships can be

used for generalizing rainfall erosivity indexes on the basis

of intensity in more places. In a tropical watershed in the

Colombia lands, Hoyos et al. [2] estimated the annual EI30

from rainfall amounts for ten stations without rainfall inten-

sity data by using two equations for wet and dry seasons.

Moreover, in other research a comparison of modeling

between the monthly EI30 and Fournier index, storm rain-

fall, storm duration, and monthly rainfall values for days

with ≥10 mm (rain10) and the number of days in a month

with rainfall ≥10 mm (day10) was carried out. Models using

rain10 and day10 for the estimation of the monthly EI30 have

been presented for the least root mean square error (RMSE)

and percentage error (PE) [3]. 

Interpolation methods are tools for estimating unknown

values from data observed at known locations. Due to

sparse synoptic stations, it is necessary to estimate the ero-

sivity index for regions between stations to prepare maps.

Interpolation techniques can be divided into deterministic

and stochastic models. In this relation, inverse distance

weighting (IDW) and redial basis functions (RBF) are

based on deterministic models, and kriging and cokriging

are based on stochastic models. Kriging and cokriging

methods using the autocovariance structure present in semi-

variograms. Semivariograms display the similarity degree

of regionalized variables over a determined distance, lag α

[4]. 

Some studies have compared different interpolation

methods. Goovaerts [5] compared three geostatistical algo-

rithms (including simple kriging) with varying local means,

kriging with external drift, and collocated ordinary cokrig-

ing. Among these geostatistical algorithms, the best results

are obtained with ordinary cokriging. Cross-validation

results have shown that the accuracy of different geostatis-

tical techniques can vary greatly. Another study has demon-

strated that the local polynomial algorithm is better than the

IDW method for the investigation of rainfall erosivity in a

tropical watershed [2]. Zhang et al. [6] found that the

Disjunction Kriging method has more accuracy than

Ordinary Kriging and Simple Kriging methods for analysis

spatial pattern of rainfall erosivity in Fujian Province. Other

research by Men et al. [7] has shown that secondary order

of ordinary kriging produced the best results, and the first

order of ordinary kriging in Hebei Province.

In relation to the estimation of monthly rainfall, Lloyd

[8] applied elevation as a secondary variable by kriging

with external drift. Hourly precipitation was interpolated by

Verworn and Haberlandt [9] with the additional variable

including topography rainfall data from the denser net-

works and weather radar. This research presented that dif-

ferent types of semivariogram had low impact on perfor-

mance of interpolation. Also, Diodato and Ceccarelli [10]

have compared IDW, ordinary kriging and ordinary cokrig-

ing for spatial variability of precipitation. They concluded

that cokriging by elevation as co-variable is the best method

for interpolation, especially in mountainous regions

because precipitation is a geomorphologic feature. 

As seen, there are several studies that investigate interpo-

lation methods for estimating the rainfall amounts and rain-

fall erosivity index. There is not much research that compares

different types of interpolation methods, including determin-

istic and stochastic approaches for estimation rainfall erosiv-

ity index and produces a reliable map of the erosivity index.

The objectives of this study were as follows: 

1) to estimate EI30 from more readily available parameters

and indexes

2) to analyze and model the spatial variability of the EI30

index

3) to prepare a map of sparsely measured EI30 values and

to characterize the reliability of this map 

4) to select the best interpolation technique

The results of this study created an optimal erosivity

index map that can be used in decision-making processes

for the evaluation of soil erosion.

1660 Khorsandi N., et al. 

Fig. 1. The location of the study area and its rainfall stations.



Material and Methods

Study Area

The study area is located in the Khazar watershed

between 84º49’-54º41’E and 35º36’-37º19’N in northern

Iran (Fig. 1). This area is bordered by the Caspian Sea to the

north and has a mountain range in the southern region of the

Khazar watershed. The mean annual precipitation varies

from 1,400 mm in coastal areas to 300 mm in the

Nemarestagh valley. The average elevation is 1,300 m

above sea level. The climates of this area are subhumid and

semiarid. 

Data Sources

Data on rainfall amounts (daily, monthly, and annually)

that had a minimal record length of 25 years were available

at 86 stations. Rainfall data were collected from the Iran

Meteorological Office. Of these 86 stations, only 20 sta-

tions recorded rainfall intensity. Rainfall intensity data for a

25-year period were obtained from the Water Resources

Management Company. 

Before using the collected data, they were controlled for

homogeneity using Run’s test.

Rainfall Erosivity Indexes

The EI30 index was computed for 20 synoptic stations of

the study area. The kinetic energy (E) was computed for

these stations as follows:

(1)

...where ir is rainfall intensity during the time interval

(mm·min-1) and ΔVr is the rainfall depth for r intervals [11].

The combination of E from Equation (1) and the maximum

intensity for the 30-min intervals produces EI30.

Parameters and Indexes Based on the Available

Types of Precipitation Data

Combinations of the parameters based on rainfall

amounts including annual rainfall, monthly rainfall, daily

rainfall, or a combination as erosivity indexes were used for

all 86 stations. The parameters used were as follows: mean

annual rainfall (P̄annual), mean monthly rainfall (P̄month), max-

imum annual rainfall (Pmax.annual), maximum monthly rain-

fall (Pmax.monthly), maximum daily rainfall (Pmax.daily), standard

deviation of annual rainfall (δannual), and standard deviation

of monthly rainfall (δmonth). 

Moreover, several indexes based on rainfall amount,

such as the Fournier, Arnoldus, and Ciccacci indexes, were

calculated for the 86 stations. The Fournier Index was cal-

culated as follows:

(2)

...where FI is the Fournier index, Mx is the mean monthly

rainfall amount in mm, and P is the mean annual precipita-

tion in mm [12]. The Arnoldus index (1980) or modified

Fournier index was calculated as follows:

(3)

...where FImod is the Arnoldus index, Pi is the mean month-

ly rainfall amount in mm, and P is the mean annual rainfall

amount in mm [13]. The Ciccacci index was determined

with the following equation:

(4)

...where Ci is the Ciccacci index, δmonth is the standard devi-

ation of the monthly rainfall amount in mm, and P is the

mean annual rainfall amount in mm [14].

Interpolation Methods

Kriging Method

It is necessary for the rainfall erosivity data to follow a

normal distribution. The normality of the data was evaluat-

ed by the Kolmogorov-Smirnov test [7]. A semivariogram

was used for the evaluation of the spatial correlation of the

rainfall erosivity index by GS+ software. The semivariance

that quantified spatial variations for all possible pairings of

data was calculated by the following equation:

(5)

...where γ(h) is the semivariance at each lag (separating dis-

tance), N(h) is the number of point pairs separated by the

given lag, z(xi) is the measurement at location xi, and

z(xi+h) is the measurement at xi+h. The best model was fit-

ted to semivariogrm functions, and its range, sill, and

nugget were optimized with the use of cross-validation [5].

Cokriging Method

Cokriging is an approach for incorporating secondary

information, and cokriging is a multivariate extension of

kriging. In this method, the correlations between the rainfall

erosivity index and environmental variables that had an

effect on the index are determined for selecting a covari-

able. Cokriging allows for the consideration of other envi-

ronmental variables. Cokriging was determined as follows:

(6)

...where γuv is the cross-semivariance between u and v, Zu(x) is

the primary variable, and Zv(x) is the secondary variable [15].

)}]()()}{()([{
2
1 hxZxZhxZxZEh vvuuuv

k

r
rr ViE

1
)]05.0exp(72.01[29.0

2
)(

1

)}()({
)(2

1)( hxZxZ
hN

h
hN

i
ii  

PC monthi

2

mod P
PFI i

2

P
MFI x

Comparison of Different Interpolation... 1661



The following three steps were used to implement the cok-

riging method: 

1) semivariogram analysis of EI30

2) semivariogram analysis of covariable data 

3) analysis of the cross-semivariogram 

The semivariogram analysis for these three steps was

carried out according to the kriging interpolation tech-

nique. 

RBF Method

RBF methods are a series of exact interpolation

methods in which the surface must go through each

known value. There are five different functions in the

Arc GIS software as follows: thin plate spline, spline

with tension, completely regularized spline, multiqua-

dratic function, and inverse multiquadratic function.

Each basic function has a different shape and results in a

slightly different interpolation surface. Each of the func-

tions has a parameter that controls the smoothness of the

surface. The appropriate function and number of para-

meters were selected with the use of the cross-validation

technique.

IDW Method

IDW is the simplest interpolation method. A neighbor-

hood around the interpolated point is identified, and a

weighted average is taken of the observation values within

the neighborhood. The weights are a decreasing function of

distance. The property at each location without data is cal-

culated by the following equation:

(7)

...where zi is the property at location i, zj is the property at

sampled location j, dij is the distance from i to j, n is the

number of sampled locations, and n is the inverse distance

weighting power [16].

Comparative Performance of the Different

Interpolation Methods

The validation of interpolation methods was evaluated

by cross-validation and by a correlation of the map trend

with actual trends. The cross-validation omitted a point and

calculated the value of this location using the remaining

points. The predicted and actual values at the location of the

omitted point were compared. This procedure was repeated

for a second point. Finally, the cross-validation was carried

out by calculating the mean absolute error (MAE) and the

root mean square error (RMSE) as follows: 

(8)

(9)

...where Z* is the estimated value, Z is the observed value,

and n is the station number.

Results and Discussion

Rainfall Erosivity Index

It is necessary to generalize appropriate erosivity index

(EI30) values for stations that lack rainfall intensity data. For

this purpose, one may estimate EI30 from readily available

rainfall parameters and erosivity indexes based on rainfall

amount data. Thus, in 20 stations that had rainfall amount and

intensity data, the following parameters and indices were cal-

culated: δannual, Pmax.annual, P̄annual, δmonth, Pmax.month, Pmax.day, and

several erosivity indexes based on rainfall amount, including

FI, FImod, and Ci. Moreover,  the EI30 index was determined

for these 20 stations. The correlation coefficients between

EI30 and the parameters and indices based on a rainfall

amount are presented in Table 1. Only EI30 was significantly

correlated (r2=0.75 and P<0.01) with FImod. Therefore, a

regional regression model was obtained for estimating EI30 as

follows:
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Table 1. The correlation coefficient between EI30 and parameters/indexes based on rainfall amount in 20 synoptic stations.

δannual Pmax.annual P̄annual δmonth Pmax.month Pmax.day FI FImod Ci

EI30 -0.33 -0.42 0.25 -0.29 -0.26 0.17 0.50 0.77** 0.34

**means significant correlation at P<0.01.

Table 2. The descriptive statistics of rainfall erosivity in the study area.

Distribution type min max mean CV1 skewness kurtosis

EI30 lognormal 171 1446 870.65 46.20 -0.68 -0.46

1CV means coefficient of variations.

Unit of min, max and mean are MJ·mm·ha-1·h-1·y-1



(10)

As seen, this regression model showed that 72 percent

of the variations EI30 are explained by FImod. Therefore, to

generalize EI30 to all of the stations in the study area, the

FImod index was computed from the other 66 stations with-

out rainfall intensity data. The EI30 values were then calcu-

lated for the 66 stations using Equation 10.

Interpolation Methods

The descriptive statistics of the rainfall erosivity index

are shown in Table 2. The skewness (0.68) and coefficient

of the Kolmogorov-Smirnov test (P<0.05) of rainfall ero-

sivity revealed that these data did not have a normal distri-

bution. A serious violation of data from the normal distrib-

ution may violate the variogram structure [17]. Therefore,

the primary data of rainfall erosivity were transformed with

a lognormal transformation. The Kolmogorov-Smirnov test

(P>0.05) for the lognormal data verified a normal distribu-

tion. 

An omnidirectional variogram of the EI30 data is shown

in Fig. 2. A spherical model, which was the optimal model,

was fitted to the semivariogram function by the minimal

sum of the square of the residual (RSS = 0.007). The prop-

erties of this model are shown in Table 3. The spherical

model explained 87% of the variations of the semivari-

ogram. Moreover, the nugget (C0)-to-sill (C0+C) ratio of

EI30 was 0.27. The ratio between 25 and 75 percentages rep-

resents the variable moderately spatial dependence [18].

Also, Baskan et al. [19] found this ratio is 0.32 for the soil

erodibility factor semivariogram, which presents 32 per-

cent of variability of soil erodibility factor that was unex-

plained [19].

There are different types of kriging methods. Ordinary

kriging assumes that the constant average of statistical soci-

ety is unknown, but the average is known in simple kriging.

Also, universal kriging should only be used when there is a

trend in the data. In this study, the semivariogram showed a

constant sill and range, so there was no trend in the EI30 val-

ues. Moreover, the mean of the rainfall erosivity values was

unknown. Therefore, the ordinary kriging method was suit-

able among the different types of kriging in this study. 

A surface semivariogram in different directions is

shown in Fig. 2. The elliptical contour lines present

anisotropy and the concentric contour lines indicate

isotropy [20]. The surface semivariogram in this study

demonstrated that while the separation distance increases,

the semivariance of EI30 has different trends at an azimuth

of 32º when compared to the other directions. Therefore,

rainfall erosivity showed anisotropy at 32º, which may be

related to the heterogeneity of rainfall erosivity in this

direction. Furthermore, the sill and nugget values of the

EI30 semivariogram were 0.280 and 0.076, respectively, and

were determined by the minimal RMSE (193.65) and MAE

(119.30) (Table 3). 

Another approach for incorporating secondary data is

ordinary cokriging [5]. Different environmental factors such

as elevation, latitude, and longitude may influence the rain-

fall erosivity index. The correlation coefficients for EI30

and the elevation, latitude, and longitude factors were 0.746,

0.126, and 0.178, respectively. Only elevation had a signifi-
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Fig. 2. Semivariogram (left) and surface semivariogram (right) of rainfall erosivity index.

Table 3. Parameters of model fitted to semivariogram of EI30 and predicted error of kriging method.

Range (km)
Angle (˚)

C0+C C0 CC
C

0

0
Predicted error

Model major minor sill nugget nugget/sill RMSE MAE

Spherical 273.77 103.04 32 0.280 0.076 0.270 193.65 119.30

Unit of (C0) and (C0+C) is MJ·mm·ha-1·h-1·y-1
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cant correlation with EI30 at P<0.001. Therefore, elevation

was used as the covariable in the ordinary cokriging method. 

A semivariogram of elevation and a cross-semivari-

ogram of EI30×Elevation are shown in Fig. 3. The exponen-

tial model for elevation and the Gaussian model for

EI30×Elevation were fitted by a Pearson correlation coeffi-

cient of 0.80 and 0.71, respectively. Moreover, the ratios of

(C0) to (C0+C) of elevation and EI30×Elevation were 0.23

and 0.19, respectively, indicating strong spatial dependence

(Table 4). These parameters were selected based on the

minimal RMSE (187.57) and MAE (105.54). 

In the RBF method, the minimal RMSE (195.77) and

MAE (131.04) were obtained with the inverse multiqua-

dratic equation and the optimized parameter number (1.35).

In the IDW method, the optimal power and number of

neighborhood points were determined by means of the min-

imal estimating error. The results showed that the best

power and numbers of neighborhood points for the EI30

index were 1 and 31, respectively, according to the minimal

RMSE (210.07) and MAE (133.04). 

Comparative Performance of the Different

Interpolation Methods

The cross-validation results of the different interpola-

tion methods were compared (Fig. 4). The accuracy of the

interpolation methods applied in this study was as fol-

lows: cokriging>kriging>spline>IDW. These results

showed that the geostatistical methods (kriging and cok-

riging) were more accurate than the deterministic methods

(IDW and spline). When compared to the cokriging

method, the relative RMSE found for the kriging, spline

and IDW methods was decreased by 3%, 4%, and 11%,

respectively. 

In all of the interpolation maps, the rainfall erosivity

index had a decreasing trend from west to east that corre-

lated with the climatic trend from subhumid to semiarid.

The greatest surface area of watershed allocated to EI30 was

in the range of 858-973 MJ·mm·ha-1·h-1·y-1, according to the

map obtained by cokriging. 

Conclusions

EI30, a rainfall erosivity factor of the USLE equation, is

important in erosion control and soil conservation.

Computation of EI30 based on rainfall intensity requires

intensity data at short intervals for a long period of time.

However, access to short-term-interval rainfall intensity

data in many parts of the world, especially in Iran, is limit-

ed [21]. In contrast, data based on rainfall amounts are usu-

ally available for longer periods. In this study, EI30 was esti-

mated from the modified Fournier Index based on rainfall

data. 
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Table 4. The parameters of semivariogram of elevation and cross semivariogram of EI30×Elevation.

Model Range (km) Sill (C0+C) Nugget (C0) CC
C

0

0 r2

Elevation Exponential 283 103,281 24,187 0.23 0.80

EI30×Elevation Gaussian 293 25.5 5.0 0.19 0.71

Unit of sill and nugget is MJ·mm·ha-1·h-1·y-1

Fig. 3. Semivariogram of elevation as co-variable (left) and Cross semivariogram of EI30×Elevation (right).
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In the study area, the nugget-to-sill ratio of the EI30 val-

ues indicated a strong spatial correlation between the rain-

fall erosivity index values. Moreover, the cokriging method

was the most precise interpolation method according to the

minimal RMSE (187.57) and MAE (105.54). 

The highest EI30 was observed in the western region,

which has a humid climate. Rainfall erosivity had a

decreasing trend from west (humid climate) to east (semi-

arid climate), ranging from 171 to 1,450 MJ·mm·ha-1·h-1·y-1.

Therefore, the spatial variations of rainfall erosivity are

dependent on the spatial variability of the climate. The

results from this study should be used in erosion models

and conservation in this area with high rates of erosion.
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